ON HOMOTOPY TORI AND THE ANNULUS THEOREM

C. T. C. WALL

The results stated below were obtained in 1967, and will be more fully described in a forthcoming paper [8] (at present in preprint form). This announcement is being published now in view of their application by R. C. Kirby [4] (see also below) to the proof of the annulus theorem. I understand that the same results have recently been obtained by W.-C. Hsiang and J. Shaneson. My proof has also been recast in more geometrical form by Andrew Casson.

Write T^n for the product of *n* copies of the circle S^1 . Consider pairs (M, f), M a closed *PL*-manifold and $f: M \to T^n$ a homotopy equivalence; set

$$(M,f) \sim (M',f')$$

if there is a *PL*-homeomorphism $h: M \to M'$ with $f' \circ h \simeq f$. Denote the set of equivalence classes by $\mathscr{S}(T^n)$. Similarly, using pairs (M, f) with M a compact *PL*-manifold and $f: (M, \partial M) \to (T^n \times D^k, T^n \times \partial D^k)$ a homotopy equivalence inducing a *PL*-homeomorphism on the boundary, we define $\mathscr{S}(T^n \times D^k, T^n \times \partial D^k)$.

THEOREM. There are bijections

$$\begin{split} H^{3}(T^{n}; \mathbb{Z}_{2}) &\to \mathscr{S}(T^{n}) \quad (n \geq 5), \\ H^{3-k}(T^{n}; \mathbb{Z}_{2}) &\to \mathscr{S}(T^{n} \times D^{k}, T^{n} \times \partial D^{k}), \quad (n+k \geq 5), \end{split}$$

which are natural for covering maps $T^n \rightarrow T^n$.

COROLLARY. For any $f: M \to T^n$ as above, there is a finite covering $\tilde{T} \to T$ such that the induced $\tilde{f}: \tilde{M} \to \tilde{T}$ is homotopic to a PL-homeomorphism. Similarly for $f: (M, \partial M) \to (T^n \times D^k, T^n \times \partial D^k)$, with homotopies rel the boundary, provided $n+k \ge 5$ and $k \ne 3$.

The proof uses an exact sequence

$$\dots L_{n+k+1}(\pi_1(T^n)) \xrightarrow{\partial} \mathscr{S}(T^n \times D^k, T^n \times \partial D^k) \xrightarrow{\eta} \\ [S^k(T^n), G/PL] \xrightarrow{\theta} L_{n+k}(\pi_1(T^n)) \to \dots,$$

in which $S^k(T^n)$ is the k-fold suspension of T^n , G/PL is the space studied by Sullivan [6], and the functors L_{n+k} are introduced in [8]. In [8; (12, 6)], a formula is obtained permitting the inductive computation of $L_i(\pi)$ for π free abelian; (Shaneson has announced [5] the same computation). Given a short exact sequence

 $0 \to K \to \pi \to \mathbb{Z} \to 0$

with π free abelian, there is an isomorphism

$$L_i(\pi) \to L_i(K) \oplus L_{i-1}(K)$$

Received 18 December, 1968.

[[]BULL. LONDON MATH. SOC., 1 (1969), 95-97]

C. T. C. WALL

whose first component is induced by a splitting, and the second by mapping into $K(\mathbb{Z}, 1) = S^1$, making transversal at a point of S^1 , and taking the preimage. The proof was inspired by Farrell's Ph.D. thesis (Yale, 1967).

Write $n\mathbb{Z}$ for the direct sum of *n* copies of \mathbb{Z} $(= \pi_1(T^n))$. The above leads to a natural isomorphism

$$L_r(n\mathbb{Z}) = \bigoplus_{0 \leq i \leq n} \operatorname{Hom} \left(H^i(T^n; \mathbb{Z}), L_{r-i}(1) \right).$$

But $L_j(1)$ is well known (0 for j odd, \mathbb{Z}_2 for $j \equiv 2 \pmod{4}$ and \mathbb{Z} for $j \equiv 0 \pmod{4}$), and Sullivan has given [6] a formula for surgery obstructions in the simply connected case. This leads to a formula here: if N^r is a compact *PL* manifold, and $f: N \to T^n = K(n\mathbb{Z}, 1)$ induces an isomorphism of fundamental groups, then the surgery obstruction corresponding to $g: (N, \partial N) \to (G/PL, *)$ is given by

$$\theta(N, f, g)(x) = \begin{cases} 0 & r - i \text{ odd} \\ f^*(x) g^*(k_{r-i}) [N, \partial N] & r - i \equiv 2 \pmod{4} \\ f^*(x) g^*(l_{r-i}) [N, \partial N] & r - i \equiv 0 \pmod{4}, \end{cases}$$

where $x \in H^i(T^n; \mathbb{Z})$ and

$$k_j \in H^j(G/PL; \mathbb{Z}_2)$$
 for $j \equiv 2 \pmod{4}$
 $l_i \in H^j(G/PL; Q)$ for $j \equiv 0 \pmod{4}$

are the classes defined by Sullivan.

Using Sullivan's determination [6] of the homotopy type of G/PL, the evaluation of $[S^k(T^n), G/PL]$ and of θ are now simple exercises; θ is injective (hence $\eta = 0$

and ∂ is surjective) and is an isomorphism except on the summand corresponding to l_4 . The result follows; naturality for covering maps is obtained using the above formulae.

THEOREM (proved by Kirby [4] using the above). Let $f: D^n \to \text{Int } D^n$ be an orientation-preserving embedding with $f(S^{n-1})$ locally flat. Let $n \neq 4$. Then f extends to a homeomorphism $F: 2D^n \to D^n$, with $F(x) = \frac{1}{2}x$ on the boundary.

Here, $2D^n$ denotes the disc of radius 2. For $n \le 2$, the result is classical; for n = 3 it follows from triangulability of 3-manifolds. For $n \ge 5$, the proof is based on the diagram on the previous page.

Outline of Kirby's proof

Here, α is a *PL*-immersion (which exists since $T^n - pt$ is open and parallelisable), $(U^n - pt)$ is $(T^n - pt)$ with the *PL* structure induced by the immersion $f\alpha$. Since any two *PL* structures on $\mathbb{R}^n - pt$ (= $S^{n-1} \times \mathbb{R}$) are equivalent (this is due to Browder [1] for $n \ge 6$, and to me [7] for n = 5), this extends to a *PL* structure U^n on the torus. By the Corollary above, there is a covering \tilde{g} of g homotopic to a *PL*-homeomorphism k: write $\tilde{g} = kh$, with $h \simeq 1$. Then the universal cover \tilde{h} of h commutes with translations of \mathbb{R}^n by the integer lattice, so $\|\tilde{h}(x) - x\|$ is uniformly bounded. By a result of Connell [3], \tilde{h} is stable in the sense of Brown and Gluck [2]; as the other outside maps in the diagram are all *PL*, it follows that f is stable, which is equivalent to the statement given.

I am grateful to Larry Siebenmann for drawing my attention to [4] and for suggesting the use of finite coverings of tori and the extension to the case n = 5.

Added in Proof. The cases k > 0 of the theorem have been applied in a similar way: see the announcement [9] and the preprint [10].

References

- 1. W. Browder, "Structures on $M \times \mathbb{R}$ ", Proc. Cambridge Philos. Soc., 61 (1965), 337-345.
- 2. M. Brown and H. Gluck, "Stable structures on manifolds", Ann. of Math., 79 (1964), 1-58.
- 3. E. H. Connell, "Approximating stable homeomorphisms by piecewise linear ones", Ann. of Math., 78 (1963), 326-338.
- 4. R. C. Kirby, "Stable homeomorphisms", to appear in Ann. of Math.
- J. Shaneson, "Wall's surgery obstruction groups for Z×G, for suitable groups G", Bull. Amer. Math. Soc., 74 (1968), 467-471.
- 6. D. Sullivan, Geometric topology seminar notes (Princeton, 1967).
- 7. C. T. C. Wall, "On bundles over a sphere with fibre Euclidean space", Fund. Math., LXI (1967), 57-72.
- 8. C. T. C. Wall, Surgery of compact manifolds (notes, Liverpool University).
- 9. R. C. Kirby, L. C. Siebenmann and C. T. C. Wall, "The annulus conjecture and stable triangulation of manifolds", Notices Amer. Math. Soc., 16 (1969).
- 10. R. C. Kirby and L. C. Siebenmann, "On the triangulation of manifolds and the Hauptvermutung".

Department of Pure Mathematics, University of Liverpool.